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MODELING OF EQUATION FOR THE DISSIPATION
RATE OF REYNOLDS STRESSES

E. P. Sukhovich UDC 532.517.4

All the correlations involved in the equation for the rate of dissipation of kinetic turbulence energy are
modeled. Approximations derived earlier are used as model relations. Modeling is performed by direct
comparison of the approximations with the correlations obtained as a result of a numerical solution of the
Navier—Stokes unsteady-state equations. The form of the approximations and the empirical coefficients are
determined. Approximations for correlations involved in the equation for the tensor dissipation function are
obtained. A new equation for the rate of turbulence-energy dissipation is proposed. The results of the work
can be used to determine the Reynolds stresses in second-order turbulence models.

Introduction. The velocity field in turbulent flow can be described using the Navier—Stokes unsteady-state
equations. An exact numerical solution was obtained for flows in which the turbulent Reynolds number was
comparatively small {1 ]. The ratio of the scales of large and small vortices increases with it. To describe small-scale
motion with acceptable accuracy, we have to increase the number of points of the grid. Under these conditions,
different turbulence models are used for solution of the applied problems of hydrodynamics, since even for moderate
turbulent Reynolds numbers, the power of the available computers turns out to be insufficient to solve the
Navier—Stokes unsteady-state equations. .

- Second-order turbulence models are the most popular at present. A method of their construction was
proposed in the early seventies [2]. The essence of this approach is that the Reynolds stresses must be determined
from exact equations for the second single-point moments
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In Eq. (1), convective transfer and generation processes are described accurately. The term that contains
the pulsations of the external force depends on its form. For stratified flows, this term is known. The terms that
contain the correlations of pressure pulsations and dissipation and diffusion terms must be modeled, since they
contain unknown correlations of a higher order.

In [2], the results of investigations performed before 1974 are generalized and a complete second-order
turbulence model is proposed. To model the correlation ®;;, use was made of the earlier Rott formula. In subsequent
works [3, 4], a general form of the approximation for ®; was obtained using the method of invariant modeling and
the realizability condition. The unknown coefficients involved in the relation for ®;; were determined based on the
data of direct numerical simulation (DNS) in [5, 6 ). The approximation of the diffusion term is based on the
hypothesis of the gradient nature of turbulent diffusion. To determine ¢;;, use was made of the Kolmogorov
hypothesis of local isotropy of the velocity field, in accordance with which a tensor dissipation function is determined
from the relation ¢; = (3;;/3). However, the data of direct numerical modeling of flow in a boundary layer showed
[7] that the assumption of local isotropy of small-scale motion is not fulfilled, at least, for small and moderate
turbulent Reynolds numbers. In [8, 9], the Navier—Stokes equations in the Fourier space are analyzed and the
following conclusion is drawn: anisotropy of turbulence in large-scale motion induces anisotropy of turbulence in
small-scale motion for any Reynolds numbers.
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The first attempts to allow for the anisotropy of dissipation processes in turbulent flows were made only
in recent years. In [10], an algebraic relation for ¢;; was proposed. An exact differential equation for the tensor
dissipation function ¢;; that can be derived from the Navier—Stokes equations is used in [11-14]. It contains a
number of unknown correlations of a higher order that must be expressed in terms of the known correlations. Only
after this can it be used for numerical calculations. To model these correlations, universally accepted methods dating
back to the works by Kolmogorov and Rott and new techniques, in particular, the method of invariant modeling,
were employed.

The present work seeks to model the unknown correlations in the equation for a tensor dissipation function.
The relations of [11-141 are taken as the initial approximations. To determine the unknown coefficients and to
select an acceptable form of approximation, we used the data of direct numerical modeling of developed turbulent
flow in a channel [1]. Special attention was paid to the approximation of the individual terms of the equation for
the dissipation rate in strongly anisotropic turbulence. Unlike in earlier works, the form of approximation and
empirical coefficients were determined by direct comparison of the general form of the approximation for the
correlation sought with the data of DNS.

1. Basic Equations. The exact equation for the tensor dissipation function has the form

De;.
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In Eq. (2), there are five different terms that describe the generation of the tensor of dissipation rate: Fe),
Pletyijs Pe2yij Pie3yij» and Pieayij- The term I,y determines the redistribution of ¢;; in terms of pressure pulsations,
Y(¢); determines the ductile fracture of small-scale vortices, and Dy,); and T,y;; describe the viscous and turbulent
diffusions of ¢;;, respectively.

Within the framework of the complete second-order turbulence model, the correlations Pe1y;; and Dygy; are
expressed in terms of the known correlations and therefore require no modeling. The remaining terms in the
right-hand side of Eq. (2) contain the unknown correlations, which must be expressed in terms of the known
correlations in order to obtain a closed system of equations. The state of modeling of the written correlations is as
follows. In [13], Eq. (2) was modeled for uniform turbulent flow, in which the diffusion terms and the term
P(e3);; are zero. The terms Il(e);;, Pea)ijs and Y(e); were not modecled separately but an approximation for the
difference of the terms (P(e4y;; — Y(e)i) Was proposed. Approximations for Tlyij, P(e2)ij» and Y(e);; are proposed in
{14]. The results of the modeling were not compared directly with the data of DNS in the above works.

An exact equation for the scalar dissipation rate can be obtained by convolution of Eq. (2):

De k4P, +P,+ PP, AL +T. +D, Y 3)

Dt~ € el &2 £3 e4 3 I3 3 £
where all the terms are the result of convolution of the corresponding terms of Eq. (2). In [12], approximations
for the terms P.3, T, and the sum of the terms (P;) + P, + P4 — Y,) are proposed. The terms written in
parentheses were not modeled separately. The results of the modeling were compared with the data of DNS.
According to the results of the comparison, the authors draw the conclusion that the model proposed has advantages
over the known equation for the dissipation rate. We note that in this approach 1o modeling, the probability exists
that the model for the sum of the terms (P, + P,y + P.4 — Y,) could describe rather well the data of DNS for
flow in a channel but in doing so be unsuitable for description of other flows.

2. Models for the Unknown Correlations. To model the unknown correlations in Eq. (2), the authors of
{11] used the method of tensor approximation. Its essence is that the tensor of the unknown correlations is
expanded into a series with allowance for the symmetry of indexes in terms of the basis of the known correlations
obtained from the initial tensor by convolution. The character of the relationship between the tensor sought and
the basis was assumed to be linear. The tensor equalities were written using tensor coefficients, whose form was
determined using the theory of invariants. As a result of modeling, the following relations for the unknown
correlations are obtained:
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The approximations for the terms of Eq. (3) can be obtained by convolution of Egs. (4)-(11):
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A general form of approximations for unknown correlations is obtained in [11 ). The empirical coefficients
involved in the approximations were not determined. Approximation relations obtained in [13 ] have approximately
the same form as relations (5)-(18).

Unlike in [11, 13], an equation for double-point correlation of velocity puisations was written in [14]. Its
analysis showed that we can introduce a tensor that characterizes the integral scale. For this tensor, we can write
a corresponding differential equation that contains five independent coefficients. In {141}, the coefficients of the
equation for the scale were determined and the method for transforming it into the equation for the tensor
dissipation function was shown. Approximations that are somewhat different from the above were obtained as a
result of this investigation [14]. In particular, the approximation for P(¢2)ij has the following form:

K g; Py 1 g; 1 1 K
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The approximations proposed are tested indirectly in [13, 14 ]. For this purpose, the differential equation
(1) simultaneously with the corresponding approximations for ®;; and D;; and Eq. (1) with the approximations
written above for the terms of this equation were solved for homogeneous flow with a constant velocity shift for
flow in a channel and for some other flows. Next, the results of the calculations were compared with the data of
direct numerical modeling of those flows. We note that numerous approximations, each containing several empirical
coefficients, are involved in Eqs. (1) and (3). Under these conditions, an incorrect description of one correlation
can always be compensated for by the coefficients involved in the approximations for other correlations. Therefore
based on this comparison we can infer that the total action of all the above approximations permits calculation of
one or another flow with one or another degree of accuracy. It is quite impossible to make a conclusion about the
exactness of each approximation written above.

An alternative approach is as follows. To evaluate the exactness of relations (4)-(21), we need to directly
compare the data of DNS with the results of calculations by the corresponding approximating relation for each
correlation involved in Egs. (2) or (3). Up to now, direct comparisons of this type have not been performed;
therefore, the problem of selecting an approximation out of the approximations written above and of the coefficients
involved in these approximations remains to be soived.

Data of DNS for Developed Flow in a Channel. It has been shown in the previous section that, for the
same correlation, approximations that differ from each other are proposed in different works. To evaluate the
exactness of different approximations, we use the data of direct numerical modeling of developed flow in a channel
[1]. Figure 1 shows the distributions of the components of the dissipation tensor along the transverse coordinate.
They differ rather strongly from isotropic values, which can be determined from the relation

_1 22
ey =3 68 (22)

The deviation from isotropy increases as the wall is approached. Figure 2 shows the distributions of correlations
involved in the equation for a scalar rate of dissipation. All the quantities are made dimensionless by division of
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Fig. 1. Distribution of the components of the tensor ¢;; in channel.
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Fig. 2. Data of DNS for correlations in the equation for the rate of dissipation
of turbulence kinetic energy.

the corresponding term by Uf/ »2. From the figures it follows that the terms P4 and Y, predominate in the equations
for the dissipation rate. However, in the vicinity of the wall, the contribution of the terms of generation P,y and
P.> becomes substantial. On the wall itself, the term Y, is balanced by viscous diffusion D,. The small terms P.3,
T., and D, are shown in Fig. 2b. The term II, is negligibly small in the entire region of the flow.

4. Results of Modeling. Data for correlations contained in Eq. (2) are not given in [1]. Therefore, for
modeling we can use only the correlations that are involved in (3) for the dissipation rate . We obtained some
information on the coefficients and the form of the approximations for the correlations Py, Pee2)ijs Pe3)ijs
Peayijs eyijs Y(e)ijs Te)ij» and Dyeyij with allowance for the fact that the terms of Eq. (3) are convolutions of the
corresponding tensors of Eq. (2).

Correlation P(y;. Relations (5) and (12) for P(y; and Py are exact and because of this there is no
need to model them. Comparisons of the data of DNS with the results of calculations by formula (12) given in Fig.
3 suggest that the agreement of the data of DNS with calculation is rather good, especially in the wall region of
the flow. Away from the wall the effect of this term is small.

Correlation P(¢2);;. To model this correlation, the authors of {11, 13, 14] propose to use approximations
(6) and (19). The corresponding approximations for the correlation P, have the form of (13) and (20). Figure 4
shows a comparison of the data of DNS with the results of calculations by the formulas proposed. From the figure
it can be seen that approximations (13) and (20) describe unsatisfactorily the results of direct numerical modeling.
Processing of the data of DNS showed that their best description can be obtained when we use approximation (20)
in the form

K P,
22 T T (23)
€
Accordingly, for the approximation of the correlation P.2);;, we can recommend thc relation
K €. P
= - i’k (24)
2 Ple2yii = :
& &£ &

Correlation P(.3y;. The data of Fig. 2 indicate that this correlation is small as compared to other terms of
Eg. (3). For it, approximation (14) is proposed in [11] which in a rectangular coordinate system takes the form
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Fig. 3. Comparison of the results of calculations with the data of DNS for the
correlation Pgy: 1) data of DNS; 2) calculation by formula (12).

Fig. 4. Comparison of the results of calculations with the data of DNS for the
correlation Pgy: 1) data of DNS; 2) calculation by formula (23); 3) by formula
(20); 4) by the model of [13].
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Figure 5 shows a comparison of the data of DNS with calculation by formula (25) for (§; — &) = —0.5. According
to the figure, approximation (25) describes unsatisfactorily the results of direct numerical modeling; therefore,
allowing for the small contribution of this correlation to the total balance of the equation of conservation of the
dissipation rate, we can assume Pe3y = 0 as a first approximation.

Correlation P(c4);. From the distributions of Fig. 2a it follows that the correlation P4 is the main source
term in the equation for the dissipation rate. We note that practically all second-order turbulence models use
currently an equation for the dissipation rate in the form

: K
= =C, =P~ Cp=+C, (—Rijeyj)_, (26)
Vi

where C,;1 = 1.45; C;» = 1.9; C, = 0.15.

Equation (26) is obtained based on intuitive notions that the time variation in the dissipation rate is
determined by a source term that is proportional to the generation of turbulence energy, the runoff term, and the
diffusion term. In relation (26), it is assumed in implicit form that
K P,

_P£4=C£1—' (27)

2
£ £

Approximations (8) and (135) proposed in {11 ] differ fundamentally from expression (27). The scalar coefficients
P
y1 and y; can, in principle, depend on the scalar invariants -g—lf, £2P£1, X1, 1y, 111y, Fp, or Iy, 1114, and Fy.
£

Processing of the results of DNS showed that the dependence of the coefficient y, on the above invariants
can be sought in the form
K P

k
£ [

To determine the coefficients a;, we used the data of Fig. 2. As a result of analyzing, we obtained the following
coefficients:

a; =175; ay=34; az=-029; a,=36. (29)
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Fig. 5. Comparison of the results of calculations with the data of DNS for the
correlation P.3: 1) data of DNS; 2) calculation by formula (25).

Fig. 6. Comparison of the results of calculations with the data of DNS for the
correlation Pg4: 1) data of DNS; 2) calculation by formulas (15) and (28); 3)
by formula (28); 2) by formula (27).

Figure 6 shows the distribution of the function L§~P54 across the thickness of the boundary layer, from which
€

it follows that in the entire region of the flow the data of DNS are in good agreement with calculation by formulas
(28) and (29). From the figure it can be seen that calculation by formula (27) can cause a large error. Thus, to
calculate the correlations considered, we can recommend approximations (8) and (15), whose coefficients are
determined by relations (28) and (29). Equation (28) makes it possible to calculate only the coefficient y,. For
determination of y;, additional investigations are required.

Correlation Y(;);; describes the ductile fracture of small-scale vortices. In [11], it is recommended to use
approximations (9) and (16) for the correlations Y,); and Y. In accordance with Eq. (27) an approximation that
coincides completely with relation (16), provided that 3y4 = C,.3, is proposed in |2] for determination of the
correlations Y,. The dependence of y4 on scalar invariants was sought in the form

K P,
3)/4:’)1—5})61 +b2_+b3X1 +b4Fb' (30)
€ € '

As a result of numerical optimization we obtained the following coefficients of expansion:
by =135; b,=3; by=—0.06; b, =5.6. (31)

Figure 7 compares the data of direct numerical modeling with the results of calculations by formula (16).
Correlation Tl(;y;;. Since the correlation Il is under 0.001 at all points across the boundary layer (Fig.
2b) it is appropriate to take

N =0. (32)

To determine H(S)ij, we can use approximation (i1) or (21), which contain a number of the unknown
coefficients. The latter can be determined from the data for the distributions of ¢;;.

Correlation T(g);. The approximation for this correlation is written in (10). For determination of T, there
is expression (17) and a simpler relation written in (26):

K . K |K
D) T, = ¢, 2 |:_ (kag,m)} . (33)
N3

£ £ &

Having compared the data of DNS with the results of calculations by the above formula, the authors of [1] found
that formula (33) describes satisfactorily the available data. Furthermore, this correlation is small as compared to
the remaining terms of Eq. (3). Therefore we can recommend relation (33) for using in numerical calculations.
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Fig. 7. Comparison of the results of calculations with the data of DNS for the
correlation Y.: 1) data of DNS; 2) calculation by formula (16); 3) by the
model of [2].

Correlation Dy);j. There is no need to model this correlation within the framework of the complete second-
order turbulence model since, it does not contain any unknown correlations. For calculations, we can use the
relations written in (2) and (3).

Thus, we obtained approximations for all the correlations invoived in the equation for the rate of dissipation
of kinetic turbulence energy. As a result of modeling, we have a closed equation for the dissipation rate:

De
Sy = Fet P+ P+ Py + Py + 1, + T, + D, -7, (34)
Zﬂv Pke

F£=_v+agie(t)i’ P£1=-2£ikuk,i’ P£2=7’ P83=0’ I, =0,

2 2
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Py =35 Ye=3vyg, De=vey, T,=C, [? (R/cme'm)] .

where 3y, and 3y4 are determined from relations (28)-(31) while C, = 0.15.

The data of Fig. 4-7 show that Eq. (34) can be used in the entire flow region. And where the velocity
gradients and the anisotropy are small the terms of the equation Pg3, I1,, T, and D, are negligibly small. In the
vicinity of the wall and in flows with a high degree of turbulence anisotropy, these terms yield a pronounced
contribution to the total balance of the equation for the dissipation rate.

The analysis of relation (34) simultaneously with the approximations shows that in flows with a low
anisotropy of turbulence the balance of the equation for the dissipation rate will be determined by the terms Pgy
and Y., which, in turn, depend on the generation of turbulence energy, the normalized velocity gradient, the
generation of the dissipation rate, and the degree of turbulence anisotropy. In the process of modeling of the
cquation for the dissipation rate ¢, we obtained some data on the form of the approximations for correlations
involved in the equation for the tensor dissipation function ¢;;. Furthermore, we determined the coefficients of the
approximations mentioned. The coefficients that remain unknown must be found as a result of a more detailed
investigation of the equation for ¢;;.

Thus, based on the data of direct numerical modeling [l ] we obtained approximations for all the
correlations involved in the equation for the rate of dissipation of kinetic turbulence energy. Earlier in numerical
calculations use was made of an equation for the dissipation rate that is based on intuitive notions. Comparison of
the results of calculating the individual terms of this equation with the data of DNS showed that the approximations
for the unknown correlations are in poor agreement with the data of direct numerical modeling. This shows that
the known equation for the dissipation rate cannot be recognized as satisfactory. Unlike it, in this work we modeled
each correlation involved in the exact equation for the dissipation rate. The approximations obtained describe with
a high degree of accuracy the data of DNS for developed flow in a channel. It can be assumed that the proposed
equation will be more exact and, possibly, more universal. To confirm this, we need to test the proposed equation
with reliable experimental results for flows of different types.
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NOTATION

Ry; = (u;u;), single-point correlation of velocity pulsations; Fj; = (u;f})) and F(;y; = (t/;), terms of generation
due to the action of the external force; Pj;; = — (RyUy; + Ry Uy ), term of the generation of Reynolds stresses by
the average velocity gradient; ®; = (ou;) + (pu;;))/p, term that contains the correlations of the rates of
deformation with pressure pulsations; e; = v(u;4uk ), tensor of dissipation rate; Dy = —[uujug) +
+ (pudj + (pupdy) — v(uu) i1, diffusion term; w;, f;, and p, pulsations of the velocity, the external force, and
the pressure; p, density; v, kinematic viscosity; d;;, Kronecker symbol, the angle brackets denote averaging, the

. . . .. D 0 . .
comma preceding the subscript denotes differentiation; i 9 + U"aT’ Uy, averaged velocity; 1, time; the
k

correlations involved in the equation for the tensor of dissipation rate are: F(ey = v{uiifjk) + (ujufi kD /P> Pelyij

= —(eaUjk + Ui 0> Pe2yj = —VUmaluikitjm) + jktim) s Peeayy = —2WUikdjmitkm)s Pedyy =
2 14

~v(uiemdUjpm + (jtm)Usikm) s Yieyij = =2 upgomitjhm)s Wieyy = = 5Cuj o000 + uikp k) 5 Deeyis = Veij ko

Teyij = —V Ui klj,mik,m) k> B, coefficient of volumetric expansion; g;, free fall acceleration; £(;);, dissipation term in

the equation for the density of a turbulent heat flux; 7, temperature pulsation; K = R;;/2, kinetic turbulence energy;

€ = ¢, rate of dissipation of turbulence kinetic energy; b;; = ﬁlé - %6,7, tensor of anisotropy of Reynolds stresses;
g 1 . N . S
dij = —f - géij, tensor of anisotropy of dissipation processes; Py = —RpmyUy,.,, generation of kinetic turbulence

energy; Yyt = yu,/v, dimensionless distance from the wall; u, = (vU,ywau)l/z, U, ywan» gradient of the averaged
velocity on the wall; 11y, I11p, and Fp, scalar invariants that determine the degree of anisotropy of pulsation motion:
1y = —bybki,/ 2, Iy = bybimbmi/ 3, Fy =1 + Iy + 21Uy, b = bigbyj, by = buxbimbmy 11y, 1114, and Fp, scalar
invariants that determine the degree of anisotropy of dissipation processes: Ily = —dydy; /2, Illg = diydgmdmi/ 3,
Fy =1+ 914+ 27111y the subscripts b and d indicate the method for determining scalar invariants; X; =

1/2

. . . 1
%—(SUSU) , normalized velocity gradient, S;; = f(Ui’/ + Uj‘i); ay, ap, as, aa, by, by, b3, ba, Y1, ¥2, ¥3, Y4» ¥5, Cs2,

Qg ey A3e, Cel, Cea, and C,, constants of the model.
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